Ela Structure-preserving Schur Methods for Computing Square Roots of Real Skew-hamiltonian Matrices∗

نویسندگان

  • ZHONGYUN LIU
  • YULIN ZHANG
  • RUI RALHA
  • James G. Nagy
چکیده

The contribution in this paper is two-folded. First, a complete characterization is given of the square roots of a real nonsingular skew-Hamiltonian matrix W . Using the known fact that every real skew-Hamiltonian matrix has infinitely many real Hamiltonian square roots, such square roots are described. Second, a structure-exploiting method is proposed for computing square roots of W , skew-Hamiltonian and Hamiltonian square roots. Compared to the standard real Schur method, which ignores the structure, this method requires significantly less arithmetic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure-preserving Schur methods for computing square roots of real skew-Hamiltonian matrices

The contribution in this paper is two-folded. First, a complete characterization is given of the square roots of a real nonsingular skew-Hamiltonian matrix W . Using the known fact that every real skew-Hamiltonian matrix has infinitely many real Hamiltonian square roots, such square roots are described. Second, a structure-exploiting method is proposed for computing square roots of W , skew-Ham...

متن کامل

Ela Structured Qr Algorithms for Hamiltonian Symmetric Matrices

Efficient, backward-stable, doubly structure-preserving algorithms for the Hamiltonian symmetric and skew-symmetric eigenvalue problems are developed. Numerical experiments confirm the theoretical properties of the algorithms. Also developed are doubly structure-preserving Lanczos processes for Hamiltonian symmetric and skew-symmetric matrices.

متن کامل

Numerical Computation of Deflating Subspaces of Skew-Hamiltonian/Hamiltonian Pencils

We discuss the numerical solution of structured generalized eigenvalue problems that arise from linear-quadratic optimal control problems, H∞ optimization, multibody systems, and many other areas of applied mathematics, physics, and chemistry. The classical approach for these problems requires computing invariant and deflating subspaces of matrices and matrix pencils with Hamiltonian and/or ske...

متن کامل

Hamiltonian Square Roots of Skew-Hamiltonian Matrices

We present a constructive existence proof that every real skew-Hamiltonian matrix W has a real Hamiltonian square root. The key step in this construction shows how one may bring any such W into a real quasi-Jordan canonical form via symplectic similarity. We show further that every W has infinitely many real Hamiltonian square roots, and give a lower bound on the dimension of the set of all suc...

متن کامل

Computing the square roots of matrices with central symmetry

For computing square roots of a nonsingular matrix A, which are functions of A, two well known fast and stable algorithms, which are based on the Schur decomposition of A, were proposed by Björk and Hammarling [3], for square roots of general complex matrices, and by Higham [10], for real square roots of real matrices. In this paper we further consider (the computation of) the square roots of m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012